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1 Introduction

, This paper outlines a system called Arizona, now under development at the U. of Wash-
ington. Arizonaeis intended to be a portable, public-domain collection of tools supporting
scientific computing, quantitative graphics, and data analysis, implemented in Common

* . ,O 'the Common Lisp Object System)4T.
Although there is substantial implementation of some of the modules described below,

this paper is more a description of a design than of an actual program. One excuse for
writing a paper on not-yet existing software is that Arizona is intended primarily as a

research vehicle: it is hard to predict when, if ever, it will mature and stabilize to the point
of robust production-quality code. However, we hope that the ideas embodied in its design
are of interest in themselves and of use in future scientific computing and data analysis

. systems (eg. a "New New S"[2]).
Discussion of the philosophy underlying Arizona can be found in [22,23,18,21,24,32].

-Briefly, the design is motivated by our belief that an ideal system for scientific comput;ng

and data analysis should have:

* One language that can be used "or both for line-by-line interaction or defining compiled
procedures.

9 . Minimal overhead in adding new compiled procedures (or other definitions).

* A language that supports a wide variety of abstractions and the definition of new
kinds of abstractions.

e Programming tools (editor, debugger, browsers, metering and monitoring tools).

e Automatic memory management (dynamic space allocation and garbage collection).

* *This research was supported by the Office of Naval Research under Young Investigator award N00014-
A-:- 86-K-0069, the Dept. of Energy under contract FG0685-ER2500. (The system has benefited from ideas

A,: (and sometimes code) contributed by many people, including Rick Becker, Andrew Bruce, Andreas Buja,
Pat Burns, Johfi Chambers, Bill Dunlap, Robert Gentleman, Peter Huber, Catherine Hurley, John Michalak,
Wayne bldford, Jan Pedersen, Steve Peters, Werner Stuetzle, and Alan Wilks.)
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- Portability over many types of workstations and operating systems.

* A community of users and developers.

* Access to traditional Fortran scientific subroutine libraries or equivalents.

* A representation of scientific data directly in the data structures of the language.

Comprehensive numerical, graphical, and statistical functionality.

: *2 l)evice independent static output graphics.

* Window based interactive graphics.

* Support for efficient and concurrent access to large databases.

* Documentation and tutorialp, both paper and on-line.

The first nine points (through "access to Fortran") come for free with standard Common

'0 Lisp environments. The remaining six are the research aspects of Arizona.
Because of limitations of space, for the rest of this paper we are assuming that the reader

is familiar with Common Lisp and CLOS or, at least, Lisp and object-oriented programming
in general. Others who wish to read this paper shouid review some of the references first.

1.1 The modules

Arizona is divided into a number of modules, with limited interdependencies, to permit
individual modules to stabilize and be "released" before the whole system is complete.

The modules are divided into two groups: a aumerical, quantitative kernel and an
interactive, window-based, scientific graphics part.

The non-graphical quantitative kernel is more developed at present, because it can be
implemented in an efficient, portable way using existing standards for Common Lisp and
CLOS. The quantitative kernel consists of:

9 Basic Math, which requires Common Lisp,

* Collections, which requires Common Lisp and CLOS,

S-Linear Algebra, which requires Basic Math and Collections,

* Probability, which requires Linear Algebra, "OOS--C br

* Database, which requires Collections, and DTiC TAB _

O Statistics, which requires Database and Probability. J Oati
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The current design for the graphics part is fairly tentative. Implementation of a portable
scientific graphics toolkit requires a standardized interface between Common Lisp/CLOS
and the large variety of proprietary or proposed standard window systems for workstations
and personal computers (eg. Symbolics Genera [361, NeWS[33], X[29], etc.). This standard

I/. '. (sometimes called Common Windows) is the subject of intense activity in the Common Lisp
communitv[13.28]. I have identified three modules:

. Constraints, which requires Common Lisp and CLOS. (This module might very well
be part of the non-graphical kernel, but most of the applications we have in mind at
present are in graphics.)

* Quantitative Graphics, which requires Common Windows, Collections, Constraints.
and Linear Algebra.

• Data Analysis Graphics, which requires Quantitative Graphics and Statistics

2 The quantitative kernel

2.1 Basic Math

* Basic Math consists of things that can be reasonably implemented with Common Lisp
functions and primitive Common Lisp data structures; it does not use CLOS. Included in
Basic Math are: machine constants, special functions (eg. beta, gamma) extended vector
operations (analogous to the BLAS[15] used in Linpack[8]), evaluation and interpolation (eg.
gencric continued fractions) ld numerical integration, and basic random number generators.

2.2 Collections

The Collections module has two parts: Abstract Sets and Enumerated Collections.
Instances of an Abstract Set class are used to represent one of the sets or spaces that

arise in mathematical computing. Examples are Integer-Interval, Float-Interval, and
Vector-Space, which are used in the Probability and Linear-Algebra modules.

The Enumerated Collection classes are in part modeled on the Collection classes in
% Smalltalk80[10]; instances are used for traditional compound data structures, eg. Trees,
-, Queues, Enumerated Sets, Dictionaries, Indexes, etc. Enumerated Collections are heavily

used by the Database module.
An Enumerated Collection basically serves as a framework for iterating over its elements.

A simple collection might be represented by a list; more complex collections permit more
efficiency for specialized access. (Eg. a time series might use a doubly linked list to give
efficient access to lagged observations; discrete data might use an n-dimensional array for

0 quick access to the cells of a contingency table.)
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2.3 Linear Algebra

The Linear Algebra module is discussed in detail in [21], where it is referred to as Oactus.
It provides approximately the same functionality as Linpack[8] and Eispack[30]. Howevcr.
CLOS allows Cactus to operate at a level of abstraction chosen to match the initial, high-
level, geometric descriptions of algorithms given in standard numerical analysis texts[Ill.
The use of object-oriented programming makes the implementation of standard algorithms
(eg. a QR decomposition) easier to understand and modify than the versions in the best
Fortran libraries-without sacrificing efficiency in either space or time. In addition, it is
much easier to use information about regular structure, patterns of sparsity, etc., to get
improved performance in special problems. Also, the higher lcvel of abstraction permits
extensions to, for example, computations on Hilbert spaces[14].

The Linear Algebra module provides: class definitions for Vector-Spaces, class defini-
tions for Vector-Transformations (Matrix, Positive-Definite-Matrix, Householder,
Product, etc.), methods for the protocol corresponding to the algebra of linear transfor-
mations (transform, compose, scale, add), methods for "matrix" decompositions (LU,
QR, LQ, SVD, eigen, etc.), and the ability to solve systems of linear equations and least
squares problems using a generic pseudo-inverse function that can be applied to any linear
transformation.

2.4 Probability

Inference and Monte Carlo simulation (including Bootstrapping) are supported in a uni-
fied framework through a protocol for Probability-Measure classes. Probability measure
objects are responsible for generating samples from themselves, computing their quantiles,
and computing the probabilities of appropriate sets, including tail probabilities. The defined
probability measure classes includes the standard one- and higher-dimensional parametric
densi* es and discrete distributions, and non-parametric measures, either resulting from
density estimates or the empirical measure of a data set. (It's worth noting that simple de-
scriptive statistics like mean, median, etc., are generic functions in the probability measure
protocol and are applied to data sets by viewing them as empirical distributions.)

2.5 Database

The Database module has two parts. The first concerns the representation of statistical
. data by collections of objects and is fairly well developed. The second is concerned with

providing true database facilities: efficient concurrent access to large (gigabyte) collections
of objects whose identities persist beyond the lifetime of a particular Lisp address space.
The second part is a major research topic in the database and object-oriented programming
communities[25,26].
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2.5.1 Collections of objects

In most statistical packages, data sets are represented as 2 dimensional arrays of floating
point numbers. Each row represents an individual and each column represents a variable.
This is an awkward representation, for example, for categorical data, and for data sets
with more complicated structure, such as clustering trees. It is impossible to represent
simple, but important, contextual information, such as the fact the a negative value for
height must be an error or that height at age 2 should be greater than height at age 1.

/_. An array representation makes it difficult to sort and select subsets without losing track
of important correspondences, such as the fact the row 17 in the array of bsui,, ual
producers represents the same company as row 25 in the array of all coal producers and

average sulfui content is column 3 in subsurface coal producers and column 5 in all coal
producers.

In Arizona, statistical data is represented by collections of objects. The advantages
of this are discussed in detail in [18]. Individuals are represented by objects, instances of

CLOS classes. Variables are represented by generic functions. A dataset is represented by
a collection, typically a list or one-dimensional array.

For example, in analyzing energy consumption data for cities in the US, the data on

* each city would be collected into an instance of the City class. A particular instance might
look like:
{City Seattle :population 450000 :cooling-degree-days 300 ...

Statistical variables are represented by generic functions. To get at the values in the slots

we use automatically defined accessor functions: (population {City Seattle}). The use
of generic accessor functions gives a unified way to refer to slots or arbitrary functions of
slots; we can ask for (log-population {City Seattle}), where log-population is the
obvious Lisp function.

This might seem inefficient, compared to conventional systems, where defining a new
variable means adding a column to an array, because it looks as if we would have to call a
procedure every time we wanted a value of the log-population variable. However, standard
Lisp programming techniques (lazy evaluation and memo-ization [1]) make it possible to
represent variables by functions, hide the additional complexity from the user, and so that

-.'-v. the log-population procedure is not called any more often than is absolutely necessary.
.,'. .-. Each object has an identity and existence independent of any collection. So the same

object can be in many collections; the unique object {City Seattle} would be a member
• of both All-Cities and Northwest-Cities. Similarly, generic functions are defined inde-

pendently of any collection and can be applied to any object (for which there is a method).
The independent identities maintain the important correspondences that can be hard to
keep track of in an array based system.

Also, a collection may contain objects of more than one type. For example, in energy
* production data, it might prove useful to analyze coal and oil producers together, but to

define separate coal and oil producer classes-to allow for the fact that acres-strip-mined
is not a relevant slot for oil producers. In that case, all-energy-producers would contain
instances of at least two different classes.

* 5
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2.5.2 Persistent Objects

A true database requires objects that persist beyond the lifetime of the address space in
which they were created. Arizona will be used for research into a hierarchy of functionality
relating to persistent objects:

1. Making a copy of the current state of an object, in the same address space. (There
are some non-intuitive difficulties in this seemingly trivial task; see [27].)

2. Saving objects to disk.

3. Automatic checkpointing.

4. Objects that can undo certain changes.

5. Objects that can recover some number of previous states.

6. Objects that can recover any previous state.

7. Object identities that persist beyond a particular address space (rebooting).

8. Objects that can recover a valid state after catastrophic hardware or software failure[35].

9. Sharing objects by more than one user/address space.

10. Efficient, concurrent access to large, persistent, shared databases.

2.6 Statistics

The Statistics module represents the usual descriptive statistics by generic functions that are
thought of as functionals on measures. (All the usual descriptive statistics can be thought
of as functionals on measures if we consider a dataset to be a measure with total mass N.)

Simple statistical functionals take a collection and one or more variables (Lisp functions)
as arguments. For example: (median All-Cities 8'log-population),
where All-Cities is a Collection of City objects and also an Empirical-Measure.

Median returns a number; more complex statistical functional return instances of a
Description class. A Description object remembers its training sample and can update
itself in response to changes in the training sample. Of particular interest are Model objects,
which are Description's that are also functions.

For example, least squares linear regression takes as arguments a collection intended
as the training sample, a generic function representing the response, and a list of generic
functions representing the predictors. The result of the regression is a Regression-Model
object. The Regression-Model object fits itself to the training sample by 1) extracting
a linear transformation by applying the predictor functions to each object in the training
sample, 2) extracting a response vector by applying the response function, 3) computing a
generalized inverse of the transformation via QR or SVD, and 4) applying the generalized

inverse to the response vector. The regression model is also a function in the sense that it

6



can be applied to any appropriate object (whether or not in the training sample) to predict
a value for the response. In addition, the regression object is able to compute and report
appropriate diagnostics and update its fit in reaction to inerting or deleting objects in the
training sample or functions in the predictor list.

$ 3 Scientific Graphics

The kernel described in the previous section is useless as a data analysis system-because
it lacks any graphics. An important reason for the popularity of systems like S is their
convenience and flexibility in showing pictures of data.

• "Our primary goal is to make it easy to improvise new kinds of plots without losing the
performance needed for interactive and motion graphics. The Quantitative Graphics module
supports this goal in two major ways: a defining a protocol for the representation of plots
by hierrchical display objects and implementing mechanisms for maintaining constraints
between the components of a display object (layout constraints) and between a window and
the object(s) being shown in the window (viewing constraints).

* 3.1 Hierarchical Display Objects

.. We represent a plot as a tree of Display-Node objects. Every Display-Node has:

* a parent Display-Node. The root of the display has no parent.

* a list of children Display-Nodes, which is empty for terminal nodes.

- a local coordinate system, chosen to be convenient for describing the appearance or
position of the node. For example, the local coordinate system might consist of xyz
position coordinates, rgb color coordinates, a size coordinate, a theta orientation
coordinate, and so on. The coordinate system is represented by an instance of an
abstract set class, something like the vector spaces used in the Linear Algebra module.

* appearance and position parameters that allow the node to be treated as an element
of the local coordinate system.

* a local viewing transformation, which takes local coordinates to the local coordinates
* of the parent. For the root node, it take local coordinates to screen coordinates-

that is, pixels and pixel-values representing color. The relationship between the local
viewing transformation and the coordinate systems is like the relationship of the linear
transformations and vector spaces in the Linear Algebra module.

* a list of layout constraints which make assertions about relations between the sizes,
0 shapes, viewing transformations, or local coordinate systems of descendants of the

current node.

For efficiency in motion graphics, Display-Nodes may add:

*; 7
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* a total viewing transformation, which is obtained by composing all the local transfor-
mations between the node and the root of the tree.

9 a factoring of the total viewing transformation ii~to time-varying Lnd constant parts.

, a cache holding the result of applying the constant factor.

For example. many implementations of rotating scatterplots implicitly factor the viewing
transformation into constant translation and scaling and a time-varying rotation. If the
scaling is chosen carefully, the rotation can be computed in integer arithmetic and produce
exact screen coordinates, increasing the speed of rotation by as much as 100 times-at the
cost of non-modular, machine specific drawing routines. However, we can implement the
basic idea in a modular way, by providing methods for factoring viewing transformations4 analogous to the matrix decompositions provided by the Linear Algebra module. The same
paradigm has been used in higher dimensional graphics[12] and is also applicable when color
or shape is changing over time (rather than just position).

For efficient handling of input (deciding which node the mouse is pointing at) Display-
N.? Nodes may pre-compute and cache screen coordinates-sometimes of a single pixel. but

more frequently of one or more rectangular regions.
Some Display-Nodes are Presentations, which means that they serve as a visible repre-

sentation of some other object in the programming environment-the subject of the presen-
tation. (This discussion is very loosely related to the concept of presentation given in [9] and
used in the Symbolics Genera system[36] and on the Model-View-Controller user interface
architecture used in Smalltalk[7].) For example, a point in a scatterplot is a presentation
of a record in a data set.

A presentation is related its subject by a viewing constraint, discussed in the next section.

3.2 Constraints

Constraints are abstractions that arise naturally in many statistical, scientific, or graphics
problems[1.17,16]. A constraint language allows the programmer to make assertions whose
truth is automatically maintained in the course of subsequent computation. Spreadsheets
are a widely used, if limited, form of constraint language. A full-fledged constraint language

is a major research undertaking in itself [6,34,16]. We intend to implement at least two less
ambitious constraints systems:

3.2.1 The Viewing Constraint

The basic idea is that a window is a view of one or more objects and should always show the
current state of those objects. We have a fairly good understanding of how to implement
this type of constraint. The basic technique is similar to Active Values in LOOPS[5].
The system automatically triggers appropriate computation whenever some presentation's
subject is modified. The triggered computation may take place immediately or nay be put
off until a valid state of the presentation is needed (eg. until the window is expose(,).

*
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The viewing constraint between a presentation and its subject determines (1) how the
state of the subject is reflected in the presentation and (2) how input received by the node
affects the subject. For example, if the subject is a city object in an energy consumption
database and the presentation is a point in a scatterplot, the viewing constraint is re-
sponsible for supplying the presentation with, for example, population as the x coordinate.
altitude as the y coordinate and average particulate ppm as a color variable. When the user
selects the point with the mouse, the viewing constraint is responsible for perforning the
appropriate action on the subject, such as producing an editor window that lets the user
inspect and possibly alter the slots and values for that particular city.

In a simple case, the presentation and subject share a display style object. The display
style has parameters like color, size, orientation, etc. The presentation takes its appear-
ance directly from the display style. Whenever the subject changes its display style, the
presentation is automatically notified to redraw itself.

Support for the viewing constraint makes it easy to implement and generalize brushing
scatterplots[20,19,3,32]. Earlier versions of brushing were based on a special plot that
contained several scatterplots, each showing different variables. The basic design could not
be easily extended for use in a window system where arbitrary scatterplots might be visible
at any time, or to other kinds of plots besides simple scatterplots.

In Arizona, brushing is implemented in the following way: as the cursor (or brush) moves
over a point in a scatterplot, the presentation is "painted" with the display style that was
loaded on the brush. The constraint system causes the display style of the subject (a record
in the database) to be updated automatically which in turn causes the display styles of all
other presentations of that subject to be updated. A consequence of this design is that all
exposed plots are automatically involved in painting. No plot needs to know what other
plots are on the screen.

Extensions to other types of plots are reasonably straightforward.
.r%

3.2.2 Layout constraints

Plot layout is a more open-ended and difficult constraint problem. The idea is to provide
the data analyst with a language for making and enforcing assertions about the relative
sizes, shapes, or positions of the components of a plot.

A typical example-conceptually trivial but difficult to program-is centering labels
around the sides of a scatterplot. The source of programming difficulty is conflicting coor-

* dinate systems. The center of the data region is naturally expressed in data coordinates.
Heights and widths of label strings can usually only be determined in pixels, for a given font.
The mapping of the data region into pixels cannot be determined until we know how much
room is left by the labels, but we can't position the labels, choose a font, and determine
the label widths and heights until we know where the data region is in device coordinates.

* What we will need to support layout constraints is:

* a specification language.

* internal representation.

* 9
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1,i * general purpose satisfier.

e hooks for user supplied satisfier code.

o fast specialized satisfiers that respond to common perturbations from a solution.

e effective ways of identifying and reporting under/over constrained problems.
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